On dilation operators in Triebel-Lizorkin spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On dilation operators in Triebel-Lizorkin spaces

We consider dilation operators Tk : f → f(2 k ·) in the framework of Triebel-Lizorkin spaces F s p,q(R ). If s > n max ` 1 p − 1, 0 ́ , Tk is a bounded linear operator from F s p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n max ` 1 p − 1, 0 ́ , an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the...

متن کامل

Boundedness of Rough Integral Operators on Triebel-lizorkin Spaces

We prove the boundedness of several classes of rough integral operators on Triebel-Lizorkin spaces. Our results represent improvements as well as natural extensions of many previously known results. 2010 Mathematics Subject Classification: Primary: 42B20; Secondary: 42B15, 42B25.

متن کامل

Continuity of Multilinear Operators on Triebel-lizorkin Spaces

Let T be the Calderón-Zygmund singular integral operator, a well-known result of Coifman et al. (see [6]) states that the commutator [b,T]( f ) = T(b f )− bT( f ) (where b ∈ BMO) is bounded on Lp(Rn) (1 < p <∞); Chanillo (see [1]) proves a similar result when T is replaced by the fractional integral operator; in [8, 9], these results on the TriebelLizorkin spaces and the case b ∈ Lipβ (where Li...

متن کامل

Boundedness of multilinear operators on Triebel-Lizorkin spaces

The purpose of this paper is to study the boundedness in the context of Triebel-Lizorkin spaces for some multilinear operators related to certain convolution operators. The operators include Littlewood-Paley operator, Marcinkiewicz integral, and Bochner-Riesz operator. 1. Introduction. Let T be a Calderon-Zygmund operator. A well-known result of Coif-man et al. [6] states that the commutator [b...

متن کامل

Trace operators in Besov and Triebel-Lizorkin spaces

We determine the trace of Besov spaces Bsp,q(R ) and Triebel-Lizorkin spaces Fsp,q(R ) – characterized via atomic decompositions – on hyperplanes R, n > m ∈ N, for parameters 0 < p, q < ∞ and s > 1 p . The limiting case s = 1 p is investigated as well. We generalize these assertions to traces on the boundary Γ = ∂Ω of bounded C domains Ω. Our results remain valid considering the classical space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici

سال: 2009

ISSN: 0208-6573

DOI: 10.7169/facm/1261157806